Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(2): 1863-1889, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38063964

RESUMEN

Advanced oxidation/reduction processes (AO/RPs) are considered as effective water treatment technologies and thus could be used to solve the problem of water pollution. These technologies of wastewater treatment involve the production of highly reactive species such as •OH, H•, e-aq, SO4•-, and SO3•-. These radicals can attack the targeted contaminants present in aqueous media and result in their destruction. The efficiency of AO/RPs is highly affected by various operational parameters such as initial concentration of contaminant, solution pH, catalyst amount, intensity of light source, nature of oxidant and reductant used, and the presence of various ionic species in aquatic media. Among AO/RPs, the solar light-based AO/RPs are most widely used nowadays for contaminant removal from aqueous media because of their high environmental friendliness and cost effectiveness. By using these techniques, almost all types of pollutants can be easily removed from aquatic media within short intervals of time, and hence, the problem of water pollution can be solved effectively. This review focuses on various AO/RPs used for wastewater treatment. The effects of different operational parameters that affect the efficiency of these processes toward contaminant removal have been discussed. Besides, challenges and future recommendations are also briefly provided for the researchers in order to improve the efficiency of these processes.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Oxidación-Reducción , Luz Solar , Purificación del Agua/métodos , Catálisis , Contaminantes Químicos del Agua/análisis
2.
Environ Technol ; : 1-14, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37259947

RESUMEN

In this research work, surface-modified nano zerovalent copper (nZVC) was prepared using a simple borohydride reduction method. The spectroscopic and crystallographic results revealed the successful synthesis of surface-modified nano zerovalent copper (nZVC) using solvents such as ethanol (ETOH), ethylene glycol (EG) and tween80 (T80). The as-synthesized material was fully characterized for morphological surface and crystal structural properties. The results indicated that EG provides an excellent synthesis environment to nZVC compared to ETOH and T80 in terms of good dispersion, high surface area and excellent catalytic properties. The catalytic efficiency of nZVC/EG was investigated alone and with peroxymonosulphate (PMS) in the absence of light. The degradation results demonstrated that the involvement of PMS synergistically boosted the catalytic efficiency of synthesized nZVC/EG material. Furthermore, the degradation products (DPs) of CBZ were determined by GC-MS and subsequently, the degradation pathways were proposed. The ecotoxicity analysis of the DPs was also explored. The proposed (nZVC/EG/PMS) system is economical and efficient and thus could be applied for the degradation of CBZ from an aquatic system after altering the degradation pathways in such a way that results in harmless products.

3.
Environ Sci Pollut Res Int ; 30(27): 71025-71047, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37160516

RESUMEN

This study is focused on synthesis of highly efficient Titania/reduced Graphene Oxide (TiO2/rGO) nanocomposites by means of simple hydrothermal technique. The TiO2/rGO were synthesized in different ratios of 0.5, 1.0, 2.0, and 3% by varying the concentration of rGO while the concentration of TiO2 was kept constant and the obtained samples were designated as TrG0.5, TrG1, TrG2, and TrG3 respectively. Different characterization techniques (SEM, TEM, HRTEM, XRD, EDX, TGA, UV-DRS, PL, EIS, and BET) showed high crystallinity, small crystallite size (18.4 nm), high thermal stability, high purity, low band gap energy (Eg = 3.12 eV), and high surface area (65.989 m2/g) for the as-synthesized TiO2/rGO nanocomposite. The efficiencies of TiO2/rGO were determined in terms of brilliant green (BG) dye degradation in aqueous media under UV light. The results revealed that 2% TiO2/rGO (TrG2) showed high efficiency for BG degradation with the kapp of 0.023 min-1 compared to TiO2 alone (kapp of 0.006 min-1). The rate of BG degradation was further synergised by the addition of peroxymonosulfate (PMS) to the system. The degradation of BG was improved to 99.4% by the incorporation of PMS in aqueous media compared to TrG2 alone. Furthermore, the degradation of BG was also examined in various media (neutral, acidic, and basic). The results revealed that by increasing pH of the medium from 3.85 to 8.2 the degradation of BG was enhanced from 99.4 to 99.9% with the corresponding kapp of 0.0602 min-1. Moreover, the photocatalytic degradation of BG followed the pseudo-first-order kinetics. Radical scavenging experiments showed that ●OH and SO4●- were the main species responsible for the degradation of BG under UV light. Besides, for determining the efficiency of as-synthesized TrG2/PMS system, the degradation of BG was also performed in various water types (distilled water, tape water, synthetic wastewater, and industrial wastewater). The degradation products (DPs) of BG and their corresponding pathways were proposed, accordingly.


Asunto(s)
Nanocompuestos , Contaminantes Químicos del Agua , Óxidos/química , Aguas Residuales , Contaminantes Químicos del Agua/química , Agua , Titanio/química , Nanocompuestos/química
4.
Environ Sci Pollut Res Int ; 29(42): 63041-63056, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35445919

RESUMEN

Binary composite of zerovalent iron and titanium dioxide (Fe0/TiO2) was synthesized for the catalytic removal of dichlorophene (DCP) in the presence of peroxymonosulfate (PMS). The as-prepared composite (Fe0/TiO2) exhibits synergistic effect and enhanced properties like improved catalytic activity of catalyst and greater magnetic property for facile recycling of catalyst. The results showed that without addition of PMS at reaction time of 50 min, the percent degradation of DCP by TiO2, Fe0, and Fe0/TiO2 was just 5%, 11%, and 12%, respectively. However, with the addition of 0.8 mM PMS, at 10 min of reaction time, the catalytic degradation performance of Fe0, TiO2, and Fe0/TiO2 was significantly improved to 82%, 18%, and 88%, respectively. The as-prepared catalyst was fully characterized to evaluate its structure, chemical states, and morphology. Scanning electron microscopy results showed that in composite TiO2 causes dispersion of agglomerated iron particles which enhances porosity and surface area of the composites and X-ray diffraction (XRD), energy dispersive X-ray (EDX), and Fourier-transform infrared (FTIR) results revealed successful incorporation of Fe0, and oxides of Fe and TiO2 in the composite. The adsorption-desorption analysis verifies that the surface area of Fe0/TiO2 is significantly larger than bare Fe0 and TiO2. Moreover, the surface area, particle size, and crystal size of Fe0/TiO2 was surface area = 85 m2 g-1, particle size = 0.35 µm, and crystal size = 0.16 nm as compared to TiO2 alone (surface area = 22 m2 g-1, particle size = 4.25 µm, and crystal size = 25.4 nm) and Fe0 alone (surface area = 65 m2 g-1, particle size = 0.9 µm, and crystal size = 7.87 nm). The as-synthesized material showed excellent degradation performance in synthesized wastewater as well. The degradation products and their toxicities were evaluated and the resulted degradation mechanism was proposed accordingly. The toxicity values decreased in order of DP1 > DP5 > DP2 > DP3 > DP4 and the LC50 values toward fish for 96-h duration decreased from 0.531 to 67.2. This suggests that the proposed technology is an excellent option for the treatment of antibiotic containing wastewater.


Asunto(s)
Diclorofeno , Hierro , Animales , Antibacterianos , Catálisis , Hierro/química , Estrés Oxidativo , Peróxidos , Titanio/química , Aguas Residuales , Agua
5.
Environ Sci Pollut Res Int ; 28(18): 23368-23385, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33443740

RESUMEN

In this work, bismuth-doped titania (BixTiO2) with improved oxygen vacancies was synthesized by sol-gel protocol as a novel peroxymonosulfate (PMS, HSO5-) activator. HSO5- and adsorbed oxygen molecules could efficiently be transformed into their respective radicals through defect ionization to attain charge balance after their trapping on oxygen vacancies of the catalyst. XRD study of BixTiO2 with 5 wt% Bi (5BiT) revealed anatase, crystalline nature, and successful doping of Bi into TiO2 crystal lattice. The particle size obtained from BET data and SEM observations was in good agreement. PL spectra showed the formation rates of •OH by 3BiT, 7BiT, 5BiTC, and 5BiT as 0.720, 1.200, 1.489, and 2.153 µmol/h, respectively. 5BiT catalyst with high surface area (216.87 m2 g-1) and high porosity (29.81%) was observed the excellent HSO5- activator. The catalytic performance of 0BiT, 3BiT, 5BiT, and 7BiT when coupled with 2 mM HSO5- for recalcitrant flumequine (FLU) removal under dark was 10, 27, 55, and 37%, respectively. Only 5.4% decrease in catalytic efficiency was observed at the end of seventh cyclic run. Radical scavenging studies indicate that SO4•- is the dominant species that caused 62.0% degradation. Moreover, strong interaction between Bi and TiO2 through Bi-O-Ti bonds prevents Bi leaching (0.081 mg L-1) as shown by AAS. The kinetics, degradation pathways, ecotoxicity, and catalytic mechanism for recalcitrant FLU were also elucidated. Cost-efficient, environment-friendly, and high mineralization recommends this design strategy; BixTiO2/HSO5- system is a promising advanced oxidation process for the aquatic environment remediation.


Asunto(s)
Bismuto , Oxígeno , Peróxidos , Titanio
6.
ACS Omega ; 5(47): 30610-30624, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33283110

RESUMEN

In this study, we showed that doping bismuth (Bi) at the surface of Fe0 (Bi/Fe0, bimetallic iron system)-synthesized by a simple borohydride reduction method-can considerably accelerate the reductive degradation of chloramphenicol (CHP). At a reaction time of 12 min, 62, 68, 74, 95, and 82% degradation of CHP was achieved with Fe0, Bi/Fe0-1 [1% (w/w) of Bi], Bi/Fe0-3 [3% (w/w) of Bi], Bi/Fe0-5 [5% (w/w) of Bi], and Bi/Fe0-8 [8% (w/w) of Bi], respectively. Further improvements in the degradation efficiency of CHP were observed by combining the peroxymonosulfate (HSO5 -) with Bi/Fe0-5 (i.e., 81% by Bi/Fe0-5 and 98% by the Bi/Fe0-5/HSO5 - system at 8 min of treatment). Interestingly, both Fe0 and Bi/Fe0-5 showed effective H2 production under dark conditions that reached 544 and 712 µM by Fe0 and Bi/Fe0-5, respectively, in 70 mL of aqueous solution containing 0.07 g (i.e., at 1 g L-1 concentration) of the catalyst at ambient temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...